

The Losing Winner: An LLM Agent that Predicts the Market but Loses Money

Youwon Jang^{1*} Joochan Kim^{2*} Byoung-Tak Zhang^{1†}
¹Seoul National University ²Korea Institute of Science and Technology {sharifa, btzhang}@snu.ac.kr, joochan.k@kist.re.kr

Introduction

- Fine-tuned small-scale LLM (Qwen2.5-3B-Instruct) for BTC trading via market state prediction.
- Used daily price, volume, and technical indicators; trained with RLVR to classify next-day market: bullish, consolidation, bearish.
- Achieved higher classification accuracy than zero-shot baseline.
- Paradox: better predictions led to lower cumulative trading returns.
- Cause: **objective mismatch**—model optimized for classification, not profit, ignoring risk and price magnitude.
- Highlights challenges in reward design and the need to align proxy tasks with actual profit goals.

Methodology

- Supervised Fine-Tuning (SFT)
 - Initial task-specific adaptation on historical market data.
 - Model learns to classify next-day market state: Bullish, Consolidation, Bearish.
 - Trained with cross-entropy loss to maximize probability of correct labels.
 - Provides baseline policy for reinforcement learning.

$$\pi_{\text{SFT}} = \arg\max_{\pi} \mathbb{E}_{(s_t, a_t^*) \sim \mathcal{D}} \left[\log \pi (a_t^* \mid s_t) \right]$$

- Reinforcement Fine-Tuning (RFT)
 - Policy refined based on outcome-based rewards of model predictions. Trained with Low-Rank Adaptation (LoRA).
 - Uses Reinforcement Learning with Verifiable Reward (RLVR) and Guided Reward Policy Optimization (GRPO).
 - Model predicts an action (market state), evaluated against ground-truth to generate verifiable reward R_t .
 - Reward considers prediction accuracy and format accuracy; binary scoring (+1 / 0).
 - Optimization includes KL regularization to prevent deviation from initial SFT policy.

$$\pi_{\text{RFT}} = \arg \max_{\pi} \mathbb{E}_{s_t \sim \mathcal{D}} \left[\mathbb{E}_{a_t \sim \pi(\cdot | s_t)} [R_t(a_t)] - \beta \mathbb{D}_{\text{KL}} \left(\pi(\cdot | s_t) \mid | \pi_{\text{SFT}} (\cdot | s_t) \right) \right] \qquad R_t = w_{\text{format}} \cdot R_{\text{format}} + (1 - w_{\text{format}}) \cdot R_{\text{acc}}$$

Results

Strategy	Validation Set			Bullish Set			Bearish Set		
	Acc	Cum. Return	Sharpe	Acc	Cum. Return	Sharpe	Acc	Cum. Return	Sharpe
Buy & Hold	-	+15.4%	2.03	-	+78.3%	8.91	-	-17.5%	-5.02
Qwen2.5-3B-Instruct	25.4%	+10.1%	2.30	8.3%	+6.2%	3.49	38.5%	-0.4%	-2.65
+ SFT	44.1%	+8.3%	2.03	27.1%	+50.9%	8.05	23.1%	-10.2%	-2.76
+ RFT	64.4%	+0.0%	0.0	66.7%	+0.0%	0.0	75.0%	+0.0%	0.0
+ SFT & RFT	45.8%	+15.4%	2.03	41.7%	+78.3%	8.91	44.2%	-14.8%	-3.09

Conclusion

- Fine-tuned LLM agent shows higher predictive accuracy but lower trading returns.
- Reinforcement Learning leads to 'reward hacking,' ignoring return magnitude and risk management.
- 'Losing Winner' highlights risks of treating complex financial tasks as simple classification problems.
- Success of generative AI in finance relies on designing reward functions aligned with risk-adjusted profit maximization, not just proxy metrics.